Why the spring peak in Greenland field activities?

Field activities in Greenland are often confined to spring and summer. In autumn and winter, low temperatures, snowfall, the lack of sunlight, and more frequent storms do not provide optimal working conditions. Besides, the most interesting processes to study primarily occur in the warm season, such as the melting of the glaciers and ice sheet.

There are two distinct peaks in Greenland field activities. The first is in spring, for those people who need to get out there when things are still frozen, but when daylight and weather conditions are workable. The second peak is in mid-to-late summer, when weather conditions are best, melting is strongest, and the ice sheet margin and tundra is snow-free and more accessible. In between there is a potentially less pleasant period with often soggy conditions, and billions of mosquitoes. With the summer peak getting underway, let’s see what the spring rush is all about.

Installing instruments before the warm season

A good reason to get over to Greenland in spring is when you want your instruments in place to monitor what’s happening during the “warm” season, when plants grow, animals reproduce, and glaciers melt. Or, in the case of the University of Fribourg, when meltwater is generated at the top of the snowpack on the ice sheet. The Swiss scientists have now returned several times to the same sites in the lower accumulation area. They study how much meltwater gets refrozen in the cold snow underneath the surface, how much runs off into the ocean, and how this will change in time. Greenland Guidance provided weather forecasts for them to optimize their activities and prepare camp for storms, if needed. This spring their field team had two weeks on ice with surprisingly good weather conditions.

The University of Liverpool placing a weather station next to a fast-moving glacier (photo: James Lea).

Another team out there this spring was the University of Liverpool, who where installing GG-built instruments at a fast-flowing glacier in southwest Greenland. They are investigating a glacier that has retreated a lot in the past few years. When such a glacier experiences melt, an already complex system becomes even more complicated, for instance because of large pulses of meltwater originating from ice-dammed lakes along the sides. Or from rain events. With their instruments up and running in mid-May, they timed it well.

In May and June, the Geological Survey of Denmark and Greenland (GEUS) visited GC-Net weather stations high on the ice sheet. This is part of their annual maintenance efforts that take place in spring to make sure all systems are up and running during summer. We were invited along to help out. Each station takes several hours to service, but the more people can help, the faster the Twin Otter airplane can return to town. The machine experienced engine trouble, but luckily this happened at the airport before departure, and not on or over the ice sheet.

Preparing for takeoff to do maintenance at GEUS GC-Net sites (photo: Ken Mankoff).

Snow conditions

A second reason for the GC-Net maintenance to take place when it is a bit colder has to do with snow conditions. The scientists need to dig deep snow pits to asses the mass of the snow that fell since the last site visit, and this is done best before seasonal melting happens.

For others a cold snow layer means increased safety. Ski traversers crossing the ice sheet have to pass crevasse fields, and this is done much more safely if there is a solid snow bridge on top, deposited during winter. When snow gets wet because of melting, such bridges get weaker, and falling through them into a deep crevasse becomes a serious threat. That’s why the wind-powered kite-ski traverse team led by Bernice Notenboom did their expedition before the melt season, in May. They traveled an astonishing distance of nearly 2000 km from ice sheet base Dye-2 to the northwestern town of Qaanaaq. During their expedition they were confronted with several storms that we warned them about via satellite transmission.

The Winds of Change kite-ski camp

Preparations for summer

Often spring activities are mere preparations for summer expeditions. Take for instance the greenhouse in Narsaq in south Greenland. In order for charitable organization Greenland Trees to be able to plant trees along south Greenland fjords at the end of summer, their new greenhouse had to be prepared for growing seeds and cuttings in April and May. It took a lot of effort, but is was truly nice to notice how happy locals are with the project, and how eager they are to collaborate – including schools.

The Greenland Trees greenhouse in Narsaq.

In terms of volume, most of our clients and collaborators are scientists or camera crews, asking where to rent a boat, how to get permits, which locals to interview, and how to get to a remote site. But we also provided support to Swedish company SKB, who have been running and funding science projects in the Kangerlussuaq region over the past 15 years. In preparation of a groundwater sampling campaign to occur at their unique bedrock borehole in late summer, we went ahead and inspected the state of their equipment, inventoried their storage, and downloaded data collected by sensors deep underground.

The SKB bedrock borehole at the ice sheet margin.

With SKB discontinuing their Greenland science projects as of 2022, Greenland Guidance was selected to take over their surface hydrology project situated in the Two Boat Lake catchment. This is an exciting opportunity, and we welcome suggestions for scientific collaboration by anyone who reads this. More about the TBL project in an upcoming blog post!

Two Boat Lake with the ice sheet in the background.

Busy times

For Greenland Guidance, spring is the busiest time of year. This is when we support field parties remotely, take part in fieldwork ourselves, prepare for fieldwork in summer, and custom-build instruments for summer deployment. Nowadays we are also building and refurbishing instruments for use in the Himalayas for Utrecht University and the Indian Institute of Technology Roorkee. And we’ve expanded our area of expertise by now also focussing on ocean sciences through collaboration with MetOcean in Canada, and our new instrument platform Polar Monitoring.

Climate science enabled by Forloh

The glaciers in south Greenland are the canaries in the coal mine. They are located in the warmest part of Greenland. As the climate warms, glaciers further north will experience similar conditions in the future. So to learn about the future fate of the Greenland ice sheet, we must study how south Greenland glaciers fare in present-day climate conditions. For this reason we installed 3 draw wire ablation trackers (DWIATs) in south Greenland, and more instruments will follow. An important difference with most other science projects is that this project got funded by a pioneering, US-based company named Forloh.

Forloh site 1 as seen from above. The DWIAT instrument is located between helicopter and moulin (meltwater drainage hole).

For Greenland Guidance it all started when we were approached by Greenland logistics guru Kathy Young who was in touch with a company eager to contribute to climate science. A company appropriately selling warm outdoor clothing. Forloh was seeking to sponsor climate science in a cost-effective manner. With Greenland Guidance’s non-profit approach to science, a match was soon in the making.

Our missions with the instruments in south Greenland is not only that the observational data are shared freely with researchers across the globe, but also that the measurement locations are optimal for scientists. For this reason we asked the research community where they could see most value in having DWIATs monitor ice melt and motion. After this we decided on 3 sites requiring only short helicopter flights in south Greenland.

Winter temperatures – an example of Forloh scientific data displayed in the GG data portal. DWIATs also measure surface melt, latitude, longitude, altitude along with several system-diagnostics parameters. Note how DWIAT 1 got covered by winter snow accumulation judging from a reduced temperature variability on the right-hand side of the graph. But satellite transmissions keep coming in.

One monitoring site is right next to a moulin (meltwater drainage hole) on the main ice sheet. The second instrument is on the large, fast-flowing glacier named Eqalorutsit Kangilliit Sermiat (often called Qajuuttap Sermia) which is receiving increasing amounts of scientific attention these days. The third is on Nordbo glacier (Nordbogletsjer), a historic site where ice melt was also measured over 4 decades ago, providing an excellent opportunity to study the impacts of climate change since then.

Kathy Young and Steve Munsell, GG support crew along with Armin Dachauer, on Eqalorutsit Kangilliit Sermiat (also called Qajuuttap glacier) after installing a DWIAT.

Our helicopter charter took place on a Thursday in August. We were spared any weather delays, which are not uncommon when flying in Greenland. Our first site took some scouting as we had about 20 moulin candidate sites selected from satellite imagery. The second and third site were know before arrival, chosen to avoid crevasses and to match the historic measurement location, respectively. Instrument assembly/testing and drilling the draw wire into the glacier took 30-45 minutes per site. Even though the drilling at these wet sites proved difficult, we managed to stay on schedule, leaving some time for collecting footage at the spectacular moulin site.

We very much invite other scientists to collaborate scientifically or logistically in this project. Please do get in touch if you’re active in the region and have specific data needs.

The Forloh study area in south Greenland in red. The blue area contains GEUS PROMICE instrumentation. The red area is where Greenland Trees is active. Eqalorutsit Kangilliit Sermiat is the large glacier in the middle.

Breaking Boundaries: The Science of Our Planet

Greenland is, unfortunately, an excellent place to show the impact of climate change. Temperatures are increasing relatively rapidly, and the consequences are visible all around the ice sheet as outlet glaciers accelerate, thin and retreat. Entire ecosystems change, forcing the local community to change traditions and customs – for instance in fishing and hunting. Greenland is only the proverbial tip of the iceberg, as nature is in flux around the planet.

Last year Greenland Guidance supported a film crew shooting footage for a Netflix documentary. Breaking Boundaries: The Science of Our Planet came out recently and features very impressive footage of the Greenland ice sheet (and elsewhere), narrated by David Attenborough. Go see it if you haven’t already!

Borehole under ice: instrument maintenance and science support

About a decade ago a consortium of scientific and commercial organisations led by SKB in Sweden drilled a borehole in the bedrock underneath the Greenland ice sheet. Their goal: to quantify the level of interaction between the ice sheet and the groundwater below. To achieve this they drilled a 651 m long borehole angled underneath the ice sheet and equipped it with instruments. It is the first ever borehole drilled underneath an ice sheet – a truly unique project.

The location of the borehole underneath the ice sheet

Recently, SKB asked Greenland Guidance to perform instrument maintenance to ensure the continuation of the time series during a period when travel to Greenland is complicated by the COVID-19 pandemic. We gratefully accepted the task. While on site, we saw an opportunity to also shoot some drone footage.

The measurements taken in the borehole form a long, uninterrupted, and scientifically surprising time series. With the help of scientists from the University of Montana and others, SKB has written up a manuscript that is currently under review in a scientific journal. Greenland Guidance helped with the interpretation of the borehole data in terms of ice melt and movement, and is proud collaborator on the study.

Ice sheet weather station maintenance along the iconic K-transect

This year we took part in a scientific expedition to the southwestern region of the Greenland ice sheet. Representing the Geological Survey of Denmark and Greenland (GEUS), and in collaboration with the Institute for Marine and Atmospheric Research (IMAU), we serviced instruments and stakes placed at 10 different sites on the ice sheet. We accessed the remote sites, up to 140 km into the ice sheet, by Air Greenland helicopter.

GAP/PROMICE weather station KAN_U in 1 m of snow

The scientific instruments by GEUS and IMAU monitor the interaction between the atmosphere and the ice sheet. In other words, they determine how much ice melts, and what is causing the melt: which combination of warm weather, solar radiation, strong winds, etc. The GEUS instruments are part of the measurement networks of the Greenland Analogue Project (GAP) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE). We even installed 4 of our own draw-wire ice ablation trackers (DWIATs) – more about that in an upcoming news item.

The measurements are taken along the iconic K-transect, where ice sheet monitoring already began in 1990(!). The longer the times series, the more valuable it gets. Long climate records provide much needed context for measurements in individual years: if there is 5 m of ice melt – is it a lot (above average) or not?

Even though taking measurements over many years is crucial for climate science, it is not always an attractive option for funding agencies. So if you’d like to financially support the monitoring activities along the K-transect, it could make a large difference!

Greenland ice sheet monitoring at the K-transect

Greenland Guidance has several links to the iconic K-transect, where scientists have been measuring ice sheet surface mass balance for an astonishing 30 years. Not only are we building scientific instruments to be placed along the transect, we also have a history of performing maintenance on the existing infrastructure on behalf of the Institute for Marine and Atmospheric Research in Utrecht (IMAU) and the Geological Survey of Denmark and Greenland (GEUS).

The transect, consisting of 10 instrumented sites, is located along the western slope of the Greenland ice sheet, from the low-elevation ice sheet margin, up to an elevation of 1840 m above sea level. Both surface mass balance and weather/radiation observations are made, to be able to quantify ice loss, and to explain which processes (such as atmospheric warming) dominate this mass transfer from the ice sheet to the oceans.

The end of an era might be approaching as obtaining funding for the monitoring is becoming increasingly difficult. Even though the measurement time series is becoming more important with each added year – in Greenland there is nothing that compares. And even though many important scientific publications have relied on these data in the past.

That’s why SKB, the primary funder of GEUS’s efforts at the K-transect for the past 13 years, requested Greenland Guidance to construct a video with the aim to make more people aware of the climate and ice sheet science being done in Greenland, and to attract additional funding.

Support the monitoring efforts at the K-transect on the Greenland ice sheet

If you’d like to support climate science through this project, then do not hesitate to get in touch -> see the video for contact information. Or get in touch with us, and we’ll guide you to the appropriate people.

Support in development of drill to melt through Greenland ice sheet

Greenland Guidance provided insights in choosing the most durable parts for a drill being developed by the Geological Survey of Denmark and Greenland (GEUS). It’s tricky business as the melt-tip drill will generate high temperatures while melting its way through cold glacier ice. The drill development is for the HOTROD project headed by Liam Colgan, whereas Chris Shields is the project’s CTO. We were excited to be able to contribute to this project by choosing parts and shipping them over to GEUS. We’d love to see the drill in action in the field, either in 2020 or 2021.

Planting trees in Greenland

In August/September this year we supported the Greenland Trees organisation in planting trees. We helped plant 5000 tree saplings in the town of Narsarsuaq, south Greenland, where trees are abundant today – for a Greenland location. As community engagement and youth education are important themes to Greenland Trees, we also traveled to Narsaq and Qaqortoq to meet the locals, and plant another few hundred trees. Next year, in Greenland Trees’ second year, we aim to return to help plant many more trees.

BBC revisits Greenland glacier and sees … change

A few weeks ago Greenland Guidance helped the BBC with their operations in Greenland. They spoke with locals, interviewed climate scientists including professor Jason Box, and documented a tree planting project. Their expedition resulted in stunning footage, showcased in several news segments about Greenland and climate change. We were very happy to support this BBC operation and once again see how they operate – with a high level of professionalism.

Check out some of their Greenland footage here: Climate change: Greenland’s ice faces melting ‘death sentence’.

Newspaper NRC travels to Greenland

This July, Dutch newspaper NRC visited Greenland to document climate-related changes in the ice sheet. We provided guidance on when to go where, who to talk to, and we took care of some of the logistics required to stay among scientists and visit the ice sheet.

Science editor Marcel aan de Brugh: “To put together my trip to Greenland, I got help from Greenland Guidance. They know the research community very well, and had different options for me to join researchers in the field. They also arranged some other things, like a stay at the Kangerlussuaq International Science Support. My 7 day trip to Ilulissat and Kangerlussuaq (and from there onto the ice sheet) was impressive and unforgettable.”

Read about some of their experience here (in Dutch): https://www.nrc.nl/nieuws/2019/09/04/glijden-op-het-smeltende-ijs-van-groenland-a3972156

Ice ablation tracker installed on Sermilik glacier, southern Greenland ice sheet

At the location where in 2010 the largest-ever annual ablation on the Greenland ice sheet was measured, we have now installed a Greenland Guidance draw wire ice ablation tracker – DWIAT in short. The site is located all the way at the southern tip of the ice sheet, where temperatures are relatively high in summer, and where the ice surface is incredibly dark, absorbing a large fraction of the sunlight. Measurements by the PROMICE automatic weather station network tell us that here typically 5-6 m of ice melt off each year – in addition to the snow that accumulated in the preceding winter – which is a lot compared to other Greenland sites. But in 2010 the weather station QAS_L observed a record-setting ablation of more than 9 m of ice here – that’s the equivalent of 3 floors of a building!

The ice ablation tracker with Sermilik glacier and fjord in the background. Latitude: 61.0 N.

To investigate the extreme melt at this site, PROMICE has started a collaboration with the Institute for Marine and Atmospheric Research (IMAU) of Utrecht University. With more instrumentation measuring air-ice interaction on site, tracking ice ablation became even more relevant for data interpretation. That is why the Greenland Guidance DWIAT now measures ablation along side the PROMICE weather station. With it’s reference weight drilled 10 m into the ice, this unit should be capable of recording ablation until at least late summer 2020 – unless 2019 or 2020 proves to be yet another major melt year.

Documentary on climate change shot in Greenland

Documentary makers Jeannette and Stefan: “Greenland Guidance made our lives as TV makers in Greenland much easier. For operations in Paris, Rome or Madrid you can make last-minute arrangements, but Greenland is a country that is difficult to reach, where you are left wandering without proper input in advance. On several occasions we have praised ourselves lucky with the ideas of Greenland Guidance: for instance that science cruise that we could join instead of a packed tourist ship. Not only do they have great knowledge of the country, they also have ample contacts that come in handy. Do not go to Greenland without them!”

Dutch TV in Greenland

Greenland Guidance aided in setting up an expedition to Greenland by production company¬†Witfilm. They are producing a series of episodes on climate change entitled “The Rising Water”, to be aired in fall 2019 on NTR,¬†a Dutch public service broadcaster specialising in information, education and culture.

Fact checking for CNN

In July 2017 CNN filmed in east Greenland for their documentary “Global Warning” to report on the effects of climate change on the ice sheet and beyond. See the stunning footage in the Arctic Melt episode here:¬†https://edition.cnn.com/videos/world/2017/12/04/global-warning.cnn. Greenland Guidance was hired to check the episode for scientific accuracy.